Demonstration and analysis of reduced reverse-bias leakage current via design of nitride semiconductor heterostructures grown by molecular-beam epitaxy

نویسندگان

  • H. Zhang
  • E. T. Yu
چکیده

An approach for reducing reverse-bias leakage currents in Schottky contacts formed to nitride semiconductor heterostructures grown by molecular-beam epitaxy is described, demonstrated, and analyzed. By incorporation of a GaN cap layer atop a conventional AlxGa1−xN/GaN heterostructure field-effect transistor epitaxial layer structure, the direction of the electric field at the metal-semiconductor interface of a Schottky contact is reversed, resulting in a suppression of electron flow into conductive screw dislocations that are known to dominate reverse-bias leakage currents in nitride semiconductors grown by molecular-beam epitaxy. Analysis of temperature-dependent current-voltage characteristics indicates that, in structures incorporating a GaN cap layer, reverse-bias leakage currents are reduced by one to three orders of magnitude, with the mechanism for leakage current flow differing from that established previously for the more conventional structure due to the alteration in the electric field at the metal-semiconductor interface. Scanned probe measurements of local, nanoscale current distributions confirm directly that current flow via conductive dislocations is suppressed in structures incorporating the GaN cap layer. © 2006 American Institute of Physics. DOI: 10.1063/1.2150591

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of AlN buffer on electronic properties and dislocation microstructure of AlGaNÕGaN grown by molecular beam epitaxy on SiC

Electronic and structural properties of AlGaN/GaN heterostructures grown by molecular beam epitaxy on semi-insulating 4H–SiC substrates with and without an initial AlN nucleation layer are studied. Differences in microstructure were examined using scanning capacitance microscopy, which reveals negatively charged dislocations through capacitance variations, conductive atomic force microscopy, us...

متن کامل

Reduction of reverse-bias leakage current in Schottky diodes on GaN grown by molecular-beam epitaxy using surface modification with an atomic force microscope

The characteristics of dislocation-related leakage current paths in an AlGaN/GaN heterostructure grown by molecular-beam epitaxy and their mitigation by local surface modification have been investigated using conductive atomic force microscopy. When a voltage is applied between the tip in an atomic force microscope ~AFM! and the sample, a thin insulating layer is formed in the vicinity of the l...

متن کامل

Defects in nitride semiconductors: From nanoscale imaging to macroscopic device behavior

Scanning capacitance microscopy (SCM), atomic force microscopy (AFM), and conductive AFM are used to image the spatial distribution and electronic properties of threading dislocations in AlxGa1 xN/GaN epitaxial layers grown by molecular-beam epitaxy. SCM imaging reveals that GaN growth directly on SiC substrates leads to clustering of negatively charged dislocations at nucleation island boundar...

متن کامل

Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N/GaN grown by molecular-beam epitaxy

Temperature-dependent current-voltage measurements combined with conductive atomic force microscopy and analytical modeling have been used to assess possible mechanisms of reverse-bias leakage current flow in Schottky diodes fabricated from GaN and Al0.25Ga0.75N/GaN structures grown by molecular-beam epitaxy. Below 150 K, leakage current is nearly independent of temperature, indicating that con...

متن کامل

Deep ultraviolet photodetectors grown by gas source molecular beam epitaxy on sapphire and AlGaN/sapphire substrates

Optically-based chemical and biological sensors require optoelectronic devices with specific emission and detection wavelength ranges. Semiconductor optoelectronic devices applicable to this sensing are of particular interest due to their low power consumption, compact size, long lifetime, and low cost. We report the electrical and optical properties of deep UV p-i-n photodiodes (PDs) based on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005